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N U M E R I C A L  S I M U L A T I O N  A N D  O P T I M I Z A T I O N  OF T H E  P R O C E S S E S  

O F  M I C R O W A V E  T R E A T M E N T  OF D I E L E C T R I C S  

S. V. Tr igor ly i  UDC 621.365.5 

The processes of electrodynamics, heat and mass transfer, and thermomechanics in a dielectric 
under the action of microwave energy are simulated numerically. A method for solving problems 
of optimization of thermal treatment of materials in microwave apparatus using beam-type 
chambers is proposed. 

The microwave thermal treatment of dielectric materials has been used in various industries because 
of the high concentration of energy, rapid volumetric heating, and the possibility of obtaining the required 
distributions of heat sources and temperature field in the heated object [1]. Along with the conventional 
use of microwave energy for heating, drying, and defrosting, there has been increased interest in ultrahigh 
frequencies in high-temperature technologies, for example, production of refractory and heat-insulating ma- 
terials, sintering and annealing of ceramics, and thermal hardening of ground blocks [2]. Many of these 
processes are accompanied by phase changes and high temperature stresses and deformations. Therefore, 
the development of adequate mathematical models for the physical processes occurring in dielectrics under 
the action of microwave energy is an important problem. Such models can be used to control technological 
processes and design optimal microwave apparatus. 

Microwave apparatus with beam-type chambers make it possible to perform thermal treatment of 
objects with various overall dimensions, ensuring high power, uniform heating, and periodic and method- 
ical modes of operation. Among such chambers are chambers with limited and unlimited volumes whose 
dimensions far exceed the wavelength [1]. Horn or slot antennas are usually employed as emitters. 

We first consider processes of microwave thermal treatment that can occur in apparatus of any type. 
When a dielectric is placed in a microwave field, the temperature of the object increases due to dielectric 
losses, temperature strains and stresses arise, and mass-transfer processes can take place. We describe these 
processes mathematically taking into account the assumptions given below. 

For a large class of materials, except for ferromagnetics and ferroelectrics, the electric properties do 
not depend on the electric E and magnetic H intensities. With allowance for this, the constitutive equations 
for an isotropic medium are written as 

D = ~E, B = # H ,  j = 7E,  

where D and B are the electric and magnetic induction vectors, ~ and /z are the absolute dielectric and 
magnetic permittivities of the medium, ~ is the electrical conductivity, and j is the conduction current 
density. 

We assume that extraneous currents and bulk charges are absent, and the medium has a uniform 
capillary-porous structure, in which there are no chemical transformations. Following [3, 4], we assume that 
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Fig. 1. Propagation of an electromag-netic wave in 
a multilayer medium: 1, 4) air; 2) dielectric; 3) con- 
veyer belt. 

the thermal  and mechanical properties are constant and the dependence between the mechanical stresses and 
strains is linear in narrow ranges of tempera ture  and time. 

In this case, the processes of microwave thermal  t reatment  of dielectrics are described by the equations 

OD OB 
r o t H = j + - ~ T ,  r o t E - -  0~-' d i v D = 0 ,  d i v B = 0 ;  (1) 

OT ( 3 / +  2m)aTo  
0"~ + v -  ~ T  = k l lV2T + kl2V2W + kl3V2p + qt, �9 d ivu;  (2) 

cp A 

O W  
+ v �9 VI~V = k 2 t V 2 T  -t- k22~'21V + k23~72p, 

Or 
(3) 

0 p  -k- V �9 V p  = k31~72T Jr" k 3 2 V 2 I V  -~- k33V2p;  
0v 

02u  
m V 2 u  + (l + m ) .  grad (div u)  + X - ( 3 / +  2 m ) a  grad (T - To) = p 0 r  2 ; (4) 

O'ij = 2mei j  + [leij -- ( 3 / +  2 m ) a ( T  - To)]6ij, eij = eji = 0.5('lti,j -4- Uj,i).  (5) 

Equations (1) are the Maxwell equations, Eqs. (2) and (3) describe heat and mass transfer, and Eqs. (4) and 
(5) are the equations of thermomechanics. The following designations are used: T, tl T, and p are functions 
of temperature ,  moisture content, and pressure, T is time, u is the displacement vector, v is the vector 
velocity of motion, A, c, and p are the thermal  conductivity, specific heat at constant pressure, and density 
of the dielectric, qv = 0.bcoe0r tan 6]El 2 is the power of internal heat sources due to dielectric loss in the 
microwave field, w is the circular frequency, eo is the absolute dielectric permitt ivi ty of vacuum, e' is the 

relative permit t ivi ty of the material being treated,  tan 6 is the loss tangent, k11, k12 . . . . .  and k33 are the 
heat- and mass-transfer coefficients [3], l = r ,M/[(1 + v)(1 - 2u)] is the Lam6 coefficient, M and L, are 
the modulus of elasticity and Poisson's constant, m = 21.1/[2(1 + u)] is the shear modulus, a is the mean 
thermal-expansion coefficient in the tempera ture  range IT, To], X is the volumetric force vector, o'ij are the 
mechanical stress tensor components (i, j = 1, 2, 3), eij are the strain tensor components, uij  = Oui /Oxi  are 
derivatives with respect to space coordinates, ui are the displacement vector components in the x, y, and z 
directions, which are denoted by xi  (i = 1, 2, and 3), 6ij is the Kronecker delta having values 6ij = 0 (i 7 ~ j ) ,  

and 611 = (~22 = t~33 = 1. The above equations should be supplemented by appropriate initial and boundary  

conditions [1, 3, 4]. 
As follows from Eqs. (1)-(5), the electrodynamic, thermal, and mechanical processes occurring in the 

dielectric under microwave thermal t reatment  are interrelated. For example, in microwave drying, unsteady 
tempera ture  and pressure fields give rise to strains and tempera ture  stresses. At the same time, strains lead 
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to a change in the temperature  of the object (2). In addition, strains exert an influence on the propagation of 
electromagnetic waves, which is explained as follows. Because of temperature  strains, the spatial location of 
the boundaries of the dielectric changes. If the dielectric dimensions and the wavelength are commensurable, 
strains lead to a change in the electric intensity because the phase ratios change with interference of e.g., the 
incident and reflected waves. 

The  relationship between the processes considered is also due to the fact that  the mechanical, electric, 
and thermal properties of dielectrics can depend on temperature  and moisture content. 

Equations (1)-(5) can be simplified, depending on the design of microwave apparatus and the type 
of technological process. We consider the methods of solving these equations as applied to the processes of 
thermal t rea tment  of dielectrics in a microwave chamber of the beam type (Fig. 1). We assume that  the 
dielectric being treated is on a conveyer belt made of a radiotranslucent material. Between the dielectric and 
the microwave emitter and also between the transport ing belt and the metallic wall of the chamber there 

is an air gap or a different dielectric medium. Thus, the electrodynamic problem reduces to simulating the 
propagation of an electromagnetic wave in a multilayer dielectric medium. 

To solve the present problem, we simplify it assuming normal incidence of the wave on the surface of 
the object subjected to thermal t reatment  [1]. Then, from the Maxwell equations for the case of harmonic 
vibrations, we write the following wave equation, which is valid for each laver of the dielectric medium: 

d2En = k2 En. (6) 
dz 2 

Here En is a complex function of the electric intensity in a layer with number n, z is the coordinate in the 
direction of propagation of the electromagnetic wave, kn = an + j3n  is the propagation factor, and an and 
~n are the damping factor and the wavenumber, which depend on the electric properties r and tan ~n, The 
solution of Eq. (6) has the form 

En = An exp ( - k n z )  + Bn exp (knz).  

The magnetic intensity in each layer is 

kn 
H,, - - -  [An exp ( - k n z )  - Bn exp (knz)]. 

jw#~P0 
The  integration constants An and Bn are determined from the following boundary conditions: 

E 0 = A I + B 1  for z = 0 ,  

ET~-I = En, H n - l  : Hn ( n =  2 . . . . .  N - l )  for z : l n ,  

En -- O for Z = lN, 

where E0 is the electric intensity in the plane of the antenna aperture and N is the number of dielectric 
layers. Usually, one does not know E0 but  knows the density of the power radiated by the antenna: P0 = 
0.5 Re (E0/~0), where/~0 is the conjugate complex magnetic intensity at z = 0. This relation together with 
the boundary conditions are used to calculate the constants An and Bn and the distributions E(z)  and qv(z). 

The  function qv(z) is required to solve the heat- and mass-transfer problem. 
We consider the heat- and mass-transfer problem for processes of microwave drying of materials at 

temperatures  below 373 K, at which there is no excessive steam pressure. This regime is used in the thermal 
t reatment  of materials for which occurrence of considerable internal pressures, leading to large strains or 
failure, is intolerable. In this case, for a fixed dielectric being treated, the heat- and mass-transfer equations 
(2) and (3) become 

OIV = awV2 W -4- aw~V2T,  OT = a ~ 2 T  + b L 0W qv 
OT 0--~ c ~ + - - '  (7) cp 

where a is the thermal diffusivity, b is the factor of internal evaporation of moisture, L is the heat of evap- 
oration, aw is the diffusivity of moisture, and ~ is the relative thermal diffusivity. The initial temperature  
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and the moisture content are uniform throughout the volume: T = To and W ---- W0 at r ---- 0. The boundary 
conditions on the outer surface of the object have the form 

awVW + hw(W - W_) = O, AVT + h(T - T_) = 0, (8) 

where hw and h are the mass- and heat-transfer coefficients and W_ and T_ are the moisture content and 
the ambient temperature. 

To solve the heat- and mass-transfer problem, we use the finite element method, according to which the 
solution of Eqs. (7) subject to boundary conditions (8) is equivalent to finding a minimum of the functionals 

XI = / { aw[grad 
v 

,<,: 

V 

, a u , ~ .  . ~ OW OT IV} dV [- 

+ ]" ~-~ (IV - IzV-)2 dS; (9) 

S 

S 

(10) 

Here V and S are the volume and outer surface of the body. Functional (9) allows for moisture transfer by 
both concentration diffusion and thermal diffusion. We assume that within each of the elements into which 
the region V is divided, the temperature and moisture content depend linearly on the coordinates. 

Expressing functionals (9) and (10) in terms of the temperature and moisture content at nodes, per- 
forming minimization, and employing a central difference scheme [5], we obtain systems of algebraic equations 
for the moisture content and temperature at the nodes. We write these equations in matrix form: 

([Ku] + 2d[C22]/AT){W}+ 

= 2d[C22]{tV}i/Aw + ({F1}+ + aw~{F2}+/A - aw~[K22]{T}+/A); (11) 

([5"221 + 2[C221/(gAr)){T}+ 

= 2[C22]{T}i/(gAv) + ({F2}+ + bpL{F1 }+/g - bpn[Kn]{W}+/g). (12) 

Here {T}+ = 0.5({T}i+l - {T}i) and {W}+ = 0.5((W}i+1 - (W}i) (i is the time step number), (FI}+ 
and {F2}+ are the mean load vectors in time Av, {W}+ and (T}+ are the required vectors of moisture 
content and temperature at the nodes for the middle of the interval A7; [Kn], [K22], [Cn], and [C22] are the 
coefficients of the matrix equations obtained by minimizing functionals (9) and (10), g = 1 + a~bpL/A,  and 
d = (1 + a~bpL/A - aw~/A)/(cp). 

Systems (11) and (12) are solved by successive approximations. In each time step, the thermal diffusion 
of moisture is first ignored (~ --- 0). Thus, Eq. (11) becomes independent of (12). This makes it possible to 
determine the moisture content at the nodes {W}+ from (11) and then to find the temperature at the nodes 
{T}+ from {W}+ and initial temperatures {T}i. In the next iteration, systems (11) and (12) are solved 
again, but in (11) the temperature at the nodes {T}+ becomes known from the previous iteration, and this 
allows thermal diffusion to be taken into account. After the required accuracy of the moisture content is 
attained, the iterations are completed. A similar procedure is performed for the next steps At .  

The temperature field obtained by simulation is used to solve the thermoelastic problem, which is 
considered in a quasistationary approximation. Following the finite-element method, which is also employed 
at the present stage of simulation, it is necessary to minimize the total potential energy in the region considered 

YI-~ ~--~[ f 0.5{u}t[G(e)]t[~z(e)][G(e)]{U} d V -  f {u}t[G(e)]t[~l(e)]{r (e)} dV]. (13) 

e : l  V(e) V(e) 
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Here V (e) is the region occupied by an individual element, m is the number of elements, {U} is the nodal- 
displacement vector, [G (e)] and [M(e)l are matrices of gradients and elastic characteristics, and {r (~)} is the 
strain vector, related to the heat expansion of the dielectric material. 

From the minimum condition (13), we obtain a system of algebraic equations for nodal displacements, 
which is solved by the Gauss method. From the nodal displacements obtained, the strains and temperature  
stresses are evaluated using (5). 

The interrelated processes of microwave thermal t reatment  of materials with physical properties varying 
with time are simulated using the following general approach. The time of thermal treatment is divided into 
intervals within which the physical properties can be considered constant and the difference scheme can 
be considered steady [6]. In each step Av, the problems of electrodynamics, heat and mass transfer, and 
thermoelasticity are solved sequentially. From the calculation results, the physical properties of the material 
are established for the following step AT, and the procedure is repeated up to the moment of termination of 

the process. 
The proposed mathematical  models are used to control and optimize technological microwave processes 

and beam-type apparatus. One primal problem of controlling processes of microwave thermal t reatment  is 
to change the object from the initial state to the desired state. Depending on the technological features, the 
state of the object is characterized by temperature,  moisture content, temperature  stresses, strains, and other 
parameters.  

To transfer the system from the initial state Q(M) to the specified state Q+, we use the following 
optimality criteria [7]: 

- -  the accuracy of transfer at the specified t ime J = max IQ(M, T+, q) -- Q+I <~ ~'; 
D 

- -  the rate of transfer J -- max IQ(M, T, q) - Q+I <~ "~', T --* min. 
D 

Here M is a point that belongs to the examined region D, 7- is the specified time, q is a control function, 
which depends on the type of control action, and ~ is the permissible departure from the specified state. 

These problems are solved under limitations due to technological requirements and features of the 
microwave apparatus used. The main limitations for the processes of thermal t reatment  of dielectrics in 
microwave chambers of the beam type are: the maximum temperature  of the object max T(M,  7-, q) <~ T., 
where 7'. is the permissible heating temperature,  the largest value of the main or maximum shearing stresses 
(depending on the mechanical characteristics of the material) minx a(M, 7, q) <~ a., the moisture content 
W-  ~< W ~< IV+, the ambient temperature  T_ ~< To ~< iV+, the heating rate of the material OT/OT <<. @, 
the power of the microwave emitter  P_ ~< P ~< P+, consumption of microwave energy in the time of control 
T+ 

/ P(T) dT <~ P. (P. is the permissible consumption of power), the position occupied by the center of the 

0 
moving antenna S(T) above the surface being t reated F:  S(7) E F, the speed of the antenna V_ ~< V(7) ~< V+, 
and the standing-wave factor, which defines the extent  to which the microwave chamber matches the transfer 

line 1 ~< K ~< K. .  
One important  problem of control is to obtain the desired temperature  field distribution by creating 

an appropriate distribution of internal heat sources in the volume of the body. 
In the present work, we studied the possibilities of controlling internal heat sources in the microwave 

heating of a plate made of beech in a beam-type chamber (Fig. 1). The controlling parameter  was the 
distance Al between the heated object and the metallic reflecting wall. 

Calculations were performed for the following initial data: plate thickness AL = 5 cm, mean density 

of microwave power P0 = 3 W / c m  2, frequency f = 2450 MHz, initial temperature  of the plate To = 293 K, 
A = 1.15 W / ( m .  K), c -- 1717 J / (kg .  K), p --- 1560 kg /m 3, ~' = 3.4, tan 6 -- 0.17, and ambient temperature  

T+ = 293 K. 
It was assumed that  the plate length along the Oy axis was much greater than its cross section, and 

the power of internal heat sources was distributed uniformly in this direction. Therefore, heat transfer along 

105 



at2 p 
10 s W/rn 3 

/ ',,, ,, ",, 

0 0.02 0.04 z, m 

q t )  �9 

10 8 W/m 3 

4 

0 
0,06 0.10 0.14 z, m 

Fig. 2 Fig. 3 

Fig. 2. Distribution of the power of internal heat sources across the timber thickness for ~- = 3 min: 
Al -- 5 (1) and 1 cm (2). 

Fig. 3. Distribution of the power of internal heat sources across the plate thickness for x = 0. 

the Oy axis was ignored and the two-dimensional problem of heat conduction for the cross section of the plate 

was considered (Fig. 1). The thickness of the conveyer belt  was small and had negligible thermal  resistance. 
Therefore, third-order  boundary  conditions were specified over the entire outer  surface. The  heat- t ransfer  

coefficient was determined with allowance for convection and radiation. 
I t  is established that  the distr ibution qv(z) has the form of a standing wave for which positions of 

min ima and max ima  depend appreciably on the distance A1 between the plate  and the metallic wall (Fig. 2). 

The  t empera tu re  distribution T(z) is similar in nature.  At Al = 5 cm, the max ima  of qv(z) and T(z) are in 
the middle of the plate, and the min ima are at z = 1 cm and z = 4 cm. After 3-min heating, the m a x i m u m  

tempera tu re  is 378 K and the min imum tempera tures  are 303 and 312 K. 
At Al = 1 cm, the distributions qv(Z) and T(z) are different: the max imum tempera tures  are 356 K at 

z = 1 cm and 347 K at z = 4 cm and the minimum tempera tures  are 306 K at z = 2.5 cm. Controlling the 
t empera tu re  distribution by changing the distance Al, it is possible to act ivate the technological processes. 

For example,  in microwave drying, a t t a inment  of m a x i m u m  temperatures  in the middle of the object  facilitates 
faster removal of moisture [3]. To obtain  uniform heating over the entire volume of the object,  it is possible 

to change the position of the metallic wall periodically, thus displacing the max imum intensity across the 

thickness of the material .  
An impor tan t  problem of thermal  t rea tment  of dielectric materials  is to determine opt imal  regimes 

for microwave heat ing in which the t empera tu re  stresses do not exceed permissible values. This problem 
was solved for the case of h igh- tempera ture  thermal  t rea tment  of the constructions of storehouses of harmful  

chemical agents with the purpose of detoxification. The  thermal  t rea tment  of a flat concrete plate 10 cm 

thick acted upon by an immovable microwave emit ter  was simulated. 
I t  was necessary to solve the following opt imizat ion problem: to determine the power of the microwave 

emit ter ,  operat ing on a frequency of 2450 MHz, for which the max imum tempera tu re  reaches T. = 690 K in 
t ime T = 1 rain, and the m ax i m um  value of the main  t empera tu re  stresses does not exceed 48 MPa.  

Simulation was performed under  following conditions. The microwave emit ter  had a Gaussian distri- 

bution of the power of internal heat sources with the center coinciding with the middle of the cross section 

of the plate.  The  power of the internal heat  sources was distr ibuted uniformly along the length of the plate. 
The  distance between the emit ter  and the  plate and the distance between the plate and the reflecting metallic 

wall were equal to 6 cm. Third-order  boundary  conditions were imposed on the outer  surface of the plate. 
The  thermoelast ic  problem was solved for the case of plane deformation of the cross section of the 

plate  under conditions of zero displacements of the middle points of the plate in the Ox direction and rigid 
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Fig. 4. Isotherms in the concrete plate for time T = 45 sec. 

Fig. 5 

Fig. 5. Distribution of the highest principal stresses in the upper layer of the concrete plate for 
time ~- = 45 sec. 

fastening of the point A (see Fig. 1). 
Simulation results are shown in Figs. 3-5. By virtue of the symmetry  of the temperature  and 

mechanical-stress fields about the middle of the cross section of the plate, Figs. 4 and 5 show the tem- 
perature  and stress distributions only for half the plate. The  decrease in the power across the depth of the 
plate is pronounced (see Fig. 3). This is explained by the fact that  the thickness of the plate exceeds the 
depth of penetra t ion of the electromagnetic wave into concrete (A = 6.9 cm). Therefore, the concrete layers 

away from the emitter  are heated only slightly. 
It is established that  for a time of thermal t reatment  7 = 45 sec, the optimal power of the microwave 

emit ter  is equal to 2.5 kW. Thus, the maximum temperature  has is 691 K, and the principal stresses a = 
44.8 MPa are less than ~r. = 48 MPa. Two-sided microwave heating by several emitters can be recommended 

to obtain a more uniform temperature field. 
Thus, the proposed numerical procedure of simulating processes of electrodynamics; heat and mass 

transfer, and thermomechanics can be used to solve control and optimization problems as applied to the 

thermal t reatment  of dielectrics in microwave apparatus of the beam type. 
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